nLab real irreducible spin representations -- table

Redirected from "enriched model structure".
ddSpin(d1,1)Spin(d-1,1)minimal real spin representation SSdim Sdim_{\mathbb{R}} S\;\;VV in terms of S *S^\astsupergravity
1 2\mathbb{Z}_2SS real1V(S *) 2V \simeq (S^\ast)^{\otimes}^2
2 >0× 2\mathbb{R}^{\gt 0} \times \mathbb{Z}_2S +,S S^+, S^- real1V(S + *) 2(S *) 2V \simeq ({S^+}^\ast)^{\otimes^2} \oplus ({S^-}^\ast)^{\otimes 2}
3SL(2,)SL(2,\mathbb{R})SS real2VSym 2S *V \simeq Sym^2 S^\ast
4SL(2,)SL(2,\mathbb{C})S SSS_{\mathbb{C}} \simeq S' \oplus S''4V S *S *V_{\mathbb{C}} \simeq {S'}^\ast \oplus {S''}^\astd=4 N=1 supergravity
5Sp(1,1)Sp(1,1)S S 0 WS_{\mathbb{C}} \simeq S_0 \otimes_{\mathbb{C}} W8 2S 0 *V \wedge^2 S_0^\ast \simeq \mathbb{C} \oplus V_{\mathbb{C}}
6SL(2,H)S ±S 0 ± WS^\pm_{\mathbb{C}} \simeq S_0^\pm \otimes_{\mathbb{C}} W8V 2S 0 + *( 2S 0 *) *V_{\mathbb{C}} \simeq \wedge^2 {S_0^+}^\ast \simeq (\wedge^2 {S_0^-}^\ast)^\ast
7S S 0 WS_{\mathbb{C}} \simeq S_0 \otimes_{\mathbb{C}} W16 2S 0 *V 2V \wedge^2 S_0^\ast \simeq V_{\mathbb{C}} \oplus \wedge^2 V_{\mathbb{C}}
8S S S S_{\mathbb{C}} \simeq S^\prime \oplus S^{\prime\prime}16S *S *V 3V {S'}^\ast {S''}^\ast \simeq V_{\mathbb{C}} \oplus \wedge^3 V_{\mathbb{C}}
9SS real16Sym 2S *V 4VSym^2 S^\ast \simeq \mathbb{R} \oplus V \wedge^4 V
10S +,S S^+ , S^- real16Sym 2(S ±) *V ± 5VSym^2(S^\pm)^\ast \simeq V \oplus \wedge_\pm^5 Vtype II supergravity
11SS real32Sym 2S *V 2V 5VSym^2 S^\ast \simeq V \oplus \wedge^2 V \oplus \wedge^5 V11-dimensional supergravity

Last revised on August 9, 2020 at 17:47:30. See the history of this page for a list of all contributions to it.